KARNATAK ARTS, SCIENCE \& COMMERCE COLLEGE, BIDAR
(Affiliated to Gulbarga University, Kalaburagi)
(Affiliated to Gulbarga University, Kalaburagi)
NAAC RE-ACCREDIATED WITH 'A' Grade CGPA 3.24
College with Potential for Excellence Status Awarded by UGC New Delhi ISO 9001: 2015

DEPARTMENT OF MATHEMATICS
 Programme Outcomes

PO1. Communication Skills: Ability to express thoughts and ideas effectively in writing and orally; Communicate with others using appropriate media; confidently share one's views and express herself; demonstrate the ability to listen carefully, read and write analytically and present complex information in a clear and concise manner to different groups.

PO2. Critical Thinking: Capability to apply analytic thought to a body of knowledge; analyze and evaluate evidence, arguments, claims, beliefs on the basis of empirical evidence; identify relevant assumptions or implications; formulate coherent arguments; critically evaluate practices, policies and theories by following scientific approach to knowledge development.

PO3. Problem Solving: Capacity to extrapolate from what one has learned and apply their competencies to solve different kinds of non-familiar problems, rather than replicate curriculum content knowledge and apply one's learning to real life situations.

PO4. Analytical reasoning: Ability to evaluate the reliability and relevance of evidence; identify logical flaws and holes in the arguments of others; analyze and synthesize data from a variety of sources; draw valid conclusions and support them with evidence and examples and addressing opposing viewpoints.
PO5. Cooperation/Team work: Ability to work effectively and respectfully with diverse teams; facilitate cooperative or coordinated effort on the part of a group and act together as a group or a team in the interests of a common cause and work efficiently as a member of a team.

PO6. Scientific Reasoning: Ability to analyze, interpret and draw conclusions from quantitative/qualitative data; and critically evaluate ideas, evidence and experiences from an open-minded and reasoned perspective.

PO7. Information/digital Literacy: Capability to use ICT in a variety of learning situations, demonstrate ability to access, evaluate, and use a variety of relevant information sources; and use appropriate software for analysis of data.

P08. Moral and Ethical awareness/reasoning: Ability to embrace moral/ethical values in conducting one's life, formulate a position/argument about an ethical issue from multiple perspectives and use ethical practices in all work. Capable of demonstrating the ability to identify ethical issues related to one's work, avoid unethical behavior such as fabrication, falsification or misrepresentation of data or committing plagiarism, not adhering to intellectual property rights; appreciating environmental and sustainability issues; and adopting objective, unbiased and truthful actions in all aspects of work.
PO9. Leadership readiness/qualities: Capability for mapping out the tasks of a team or an organization, and setting direction, formulating an inspiring vision, building a team who can help achieve the vision, motivating and inspiring team members to engage with that vision, and using management skills to guide people to the right destination, in a smooth and efficient way.
PO10. Lifelong Learning: Ability to acquire knowledge and skills, including learning how to learn, that are necessary for participating in learning activities throughout life, through self-paced and self-directed learning aimed at personal development, meeting economic, social and cultural objectives and adapting to changing trades.

KARNATAK ARTS, SCIENCE \& COMMERCE COLLEGE, BIDAR College with Potential for Excellence Status Awarded by UGC New Delhi

DEPARTMENT OF MATHEMATICS

Programme Specific Outcomes

PSO1: Apply computational \& algorithmic versions to solve real life problems.
PSO2: Analyze \& apply mathematical arguments in a logical \& critical manner.
PSO3: Investigate and apply mathematical problems and solutions in a variety of contexts related to science, technology, business and industry, and illustrate these solutions using symbolic, numeric, or graphical methods.

PSO4: Demonstrate proficiency in writing proofs.
PSO5: to develop a positive attitude towards Mathematics as an interesting and valuable subject of study.

PSO6: Develop mathematical ideas both orally and in writing.

Course Outcomes: BMDSC1T Algebra-I and Calculus-I

SI NO.	Outcome Statement	PO/PSO	Cognit ive Level
$\mathbf{C O 1}$	Learn to solve system of linear equation.	PO1,PO4 PSO2	K1
$\mathbf{C O 2}$	Understand system of homogeneous and non homogeneous by using concept of rank of matrix.	PO6, PO7, PSO4	K2
$\mathbf{C O 3}$	Analyze techniques of integration and Differentiation of function with real variables.	PO10, PO3 PSO2	K4
$\mathbf{C O 4}$	Identify and apply the intermediate value theorems and L'Hospitals rule.	PO3,PO10 PSO3	K2
$\mathbf{C O 5}$	Apply the idea of differentiation from first principles.	PO10,PSO1	$\mathbf{K 3}$

Course Outcomes: BMDSC2T Real Analysis-I and Calculus-II

SI NO.	Outcome Statement	PO/PSO	Cognitive Level
$\mathbf{C O 1}$	Understand the fundamental properties of the real numbers that lead to define sequence and series, the formal development of real analysis.	PO3,PSO3	K2
$\mathbf{C O 2}$	Learn the concept of convergence and divergence of a sequence.	PO2,PSO1	K3
$\mathbf{C O 3}$	Able to handle and understand limits and their use in sequences, series, differentiation, and integration.	PO2,PSO5	$\mathbf{K 2}$
$\mathbf{C O 4}$	Apply the ratio, root, alternating series, and comparison teats for convergence absolute convergence of an infinite series.	PO6,PSO5	$\mathbf{K 3}$
$\mathbf{C O 5}$	Recall the extreme values of function of two variables	PO7,PSO2	$\mathbf{K 1}$

z

Course Outcomes: BMDSC3T ALGEBRA -II CALCULUS-III and REALANALYSIS -II

SI NO.	Outcome Statement	PO/PSO	Cognitiv e Level
$\mathbf{C O 1}$	Remember the significant notion of groups and Subgroups.	PO1,PO7, PS04	K1
$\mathbf{C O 2}$	Determines whether a given set and binary operation form a group by checking group axioms.	PO2, PO3, PS03	K4
$\mathbf{C O 3}$	Analyze consequences of Lagrange's theorem and describe about structure preserving maps between groups and their consequences.	PO6, PO4, PS02	K4
$\mathbf{C O 4}$	Understand the concepts of differential and fundamental theorems in differentiation And various rules.	PO3, PO5, PS04	K2
$\mathbf{C 0 5}$	Sketch curves in Cartesian, polar and pedal equations	PO8,PO5 PS01, PS06	K6

SI NO.	Outcome Statement	PO/PSO	Cognitive Level
$\mathbf{C O 1}$	To provide knowledge on solving order ordinary differential equations.	PO2,PSO2	K4
$\mathbf{C O 2}$	Understand the formation of modeling problems in ordinary differential equations and apply some standard methods to obtain its solutions.	PO3,PSO5	K2
$\mathbf{C O 3}$	Obtain an approximate set of solution function values to a second order boundary value problem using a finite difference equation.	PO7,PSO3	K3
$\mathbf{C O 4}$	To Recognize the Formation of PDE by the elimination of arbitrary constants and arbitrary functions, solutions of Lagrange's linear PDE, First order non-linear PDE of the form f(p,q)=0,f(p,q,z)=0,f(x,p)=g(y,q),clairaut's form	PO8,PSO2	K4
$\mathbf{C O 5}$	To analyze approximate set of solution function values to a second order boundary value problem using a finite difference equation.	PO4,P10,	RSO5

SI NO.	Outcome Statement	PO/PSO	Cognitive Level
CO1	Acquire basic knowledge in solving interpolation with equal interval problems by various numerical methods. Estimate the missing terms through interpolation methods.	PO1,P07, PSO1	K3
$\mathbf{C O 2}$	Develop skills in analyzing the methods of interpolating a given data, properties of interpolation with unequal intervals and derive conclusions, approximate a function using an appropriate numerical method	PO2,PO3, PSO2	K6
$\mathbf{C O 3}$	Implement numerical methods for a variety of multidisciplinary applications and a variety of numerical algorithms using appropriate technology	PO3,PO9, POS3, POS5	K3
$\mathbf{C O 4}$	How to make the difference table,relation between \& E,Factorial notation at Factorial function.	PO1,PO8 POS5	K6
$\mathbf{C O 5}$	To find the solution of linear systems by using Direct methods, Matrix inversion method, Gaussian elimination methods, Gauss-Jordan Method,	PO7, PO2 POS1	K2
$\mathbf{C O 6}$	Create table using Newton's forward difference formula, Newton's backward difference formula, Derivatives using central difference formulae, Stirling's interpolation formula, Newton's divided difference formula	PO6,PO5 POS4	K6

Course Outcome: BMSEC5B Laplace Transforms

S1. no	Outcome Statements	PO/PSO	Cognitive Level
$\mathbf{1 .}$	Basic concepts of Laplace transform and linearity Property.	PO1, PO4, PSO1	K1
$\mathbf{2 .}$	Apply the Laplace transform of some standard functions, properties and inverse Laplace transform.	PO3, PO6, PSO3	K3
$\mathbf{3 .}$	Understand the Computation of inverse Laplace transformation by partial fractions	PO8, PO2, PSO1	K2
$\mathbf{4 .}$	Develop the convolution theorem and related examples	PO5, PO2, PSO4	K6
$\mathbf{5 .}$	Evaluate the Applications of Laplace transform to solve differential equations up to second order.	PO10, PSO6	K5

SI NO.	Outcome Statement	PO/PSO	Cognitiv e Level
CO1	Acquire basic knowledge in solving interpolation with equal interval problems by various numerical methods. Estimate the missing terms through interpolation methods.	PO1,P07, PSO1	K3
$\mathbf{C O 2}$	Implement numerical methods for a variety of multidisciplinary applications and a variety of numerical algorithms using appropriate technology	PO3,PO9, PSO3, PSO5	K3
$\mathbf{C O 3}$	Create table using Newton's forward difference formula, Newton's backward difference formula, Derivatives using central difference formulae, Stirling's interpolation formula,	PO6,PO5 PSO1	K6
$\mathbf{C O 4}$	Derive Trapozoidal rule, Simpson's 1/3 - rule, Simpson's 3/8 - rule, and Weddle's rules from General Quadrature formula	PO7, PO5 PSO2	K3
$\mathbf{C O 5}$	Apply find the solution of ordinary differential equation of first order by Euler, Taylor and Runge-Kutta methods	PO3, P10, PSO2 PS06	K3
$\mathbf{C O 6}$	Compare different methods in numerical analysis with accuracy and efficiency of solution	PO6, PO5 PS02	K5

Course Outcome: BMSEC6B Fourier series and Harmonic Analysis

S1. No	Outcome Statements	PO/PSO	Cognitive Level
$\mathbf{C 0 1}$	Develop the Fourier series of the period 2π and 2L (Arbitrary period).	PO3,PO1, PS02,PSO1	K6
$\mathbf{C 0 2}$	Evaluate the Fourier series interms of even and odd functions.	PO2, PO4,	K5
$\mathbf{C 0 3}$	Implement a half range Fourier series of sine and cosine terms.	PO7.PS06	K3
$\mathbf{C 0 4}$	Explain transforms the inverse Fourier	PO6	K2
$\mathbf{C O 5}$	Examine the properties of Fourier transforms	PO3	K4
$\mathbf{C O 6}$	Identify importance of applications of Fourier transform to solve differential equations	PO7,P10 PSO4	$\mathbf{K 2}$

CO-PO Mapping

Courses / PO's	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
DSC1T Algebra- I and calculus-I	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark			\checkmark
DSC1P Practical -1	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark			\checkmark
DSC2T Real analysis- I and calculus-II	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark			
DSC2P Practical -2	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark			\checkmark
DSC3T Algebra- II ,Real analysis-II and calculus-III	\checkmark		\checkmark							
DSC3P Practical -3	\checkmark		\checkmark							
DSC4T Differential equations		\checkmark	\checkmark	\checkmark			\checkmark	\checkmark		\checkmark
DSC4P Practical -4		\checkmark	\checkmark	\checkmark			\checkmark	\checkmark		\checkmark
DSE5CT Numerical analysis -I	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
DSE5CP Practical $-5(C)$	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
SEC5B Laplace Transforms	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
DSE6CT Numerical analysis -II	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark			
DSE6CP Practical-6CC)	\checkmark		\checkmark							
SEC6B Fourier Series and Harmonic Analysis	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark			

CO-PSO Mapping

Courses / PSO's	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
DSC1T Algebra- I and calculus-I	\checkmark	\checkmark	\checkmark	\checkmark		
DSC1P Practical -1	\checkmark	\checkmark	\checkmark	\checkmark		
DSC2T Real analysis- I and calculus-II	\checkmark		\checkmark		\checkmark	
DSC2P Practical -2	\checkmark		\checkmark		\checkmark	
DSC3T Algebra- II, Real analysis-II and calculus-III	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
DSC3P Practical -3	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
DSC4T Differential equations	\checkmark		\checkmark		\checkmark	
DSC4P Practical -4	\checkmark		\checkmark		\checkmark	
DSE5CT Numerical analysis -I	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
DSE5CP Practical - 5(C)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
SEC5B Laplace Transforms	\checkmark		\checkmark	\checkmark		\checkmark
DSE6CT Numerical analysis -II	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
DSE6CP Practical- (C)	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
SEC6B Fourier Series and Harmonic Analysis	\checkmark	\checkmark		\checkmark	\checkmark	

