(Affiliated to Gulbarga University, Kalaburagi) NAAC RE-ACCREDIATED WITH 'A' Grade CGPA 3.24

KARNATAK ARTS, SCIENCE & COMMERCE COLLEGE, BIDAR College with Potential for Excellence Status Awarded by UCC New Delhi ISO 9001: 2015

Introduction:

The institution practices a blended learning system and it is ensured that the teaching-learning process is updated as per new guidelines issued by the UGC/NAAC/parent University. The faculty stay abreast of latest developments in the field of education. IQAC of the institution is a key force in guiding the teaching community in guaranteeing the introduction and implementation of outcome-based teaching and learning. As **KASCC** is affiliated to the **Gulbarga University of Kalaburagi**, the institution is bound by the norms stipulated in this regard by the latter. In compliance with the affiliated University's norms, the IQAC not only ensures the enumeration of PO/PSO/COs of all UG and PG programs and courses but also the implementation of innovative ways for outcome attainment and mapping.

Process of Establishing the PO-PSO-CO:

The university has implemented outcome based education from 2020 and the POs and COs are listed in the syllabus for each programs. A committee comprising of HODs, faculty advisors and IQAC members prepares a final version by compiling the data given in syllabus.

Statements of PO Program outcomes:

Describe what students are expected to know and would be able to do by the time of graduation. These relate to the skills, knowledge, and behaviours that students acquire as they progress through the program.

	POSTGRADUATE PROGRAMME - M. Sc – Mathematics
PO1	Problem Solving and Research Skill: Carry out research/investigation and development work to solve practical
	problems
PO2	Lifelong Learning: Demonstrate a degree of mastery over the area as per the specialization of the program.
PO3	Scholarship of knowledge: Apply advanced knowledge and skills appropriate to the discipline.
PO4	Collaborative and Multidisciplinary work: Think critically and apply appropriate logic, analysis, judgment and decision making and to function as an effective member or leader of teams to achieve common goals.
PO5	Communication: Write and present a substantial technical report/document.

PROGRAMME SPECIFIC OUTCOMES (PSO):

PSO1: Understand notion and concepts of set, function, real and complex number system.

PSO2. Understand the concepts of continuous function, limit, continuity, vector space, metric space, normed space, inner product space, topology, group theory, system of linear equation etc.

PSO3. Understand the concept of ordinary and partial differential equation and can solve both ODE and PDE by using different methods.

PSO4. Increase problem solving technique by using the concept of numerical analysis, complex analysis, graph theory, number theory, fluid dynamics, mathematical methods.

PSO5. Understand the recent development in universe and cosmology by using the concepts of theory of relativity.

PSO6. Programming in C and Mathematica helps in building technical, computing web services, including numerical, symbolic, and graphical applications that solve technical problems quickly and easily

COURSE	NAME OF THE	COURSE OUTCOME(COs)					
CODE	COURSE						
MSM 101	Real Analysis	CO1. Introduction to the notion of set and functions					
		CO2. Understand the properties of real number					
		system					
		CO3. Introduction to the concept of sequence and					
		limit, cantor set, Metric space.					
		CO4.Understand the concepts of continuous and					
		discontinuous function.					
		CO5.Introduction and applications of Mean value					
		theorem.					
		CO6.Understand the properties of Heine-Borel					
		theorem, Cantors theorem					
MSM 102	Algebra-I	CO1.Understand definition and example of group,					
		some special groups, subgroups, normal subgroup					
		and their properties, center and normalizer of a					
		group, cyclic group, class equation of a group,					
		Sylow's theorems					
		and their applications and classification of groups.					
		CO2. They will learn about Simple group, separable					
		and non-separable group.					

COURSE OUTCOME (COs):

		CO3. They will learn Definition and example of Ring,			
		Ideal, prime and maximal ideal, integral domain, Euclidian domain, PID, UFD, reducibility of			
		polynomial ring etc.			
		CO4. They will learn the basic concept and			
		properties of finite field.			
MSM 103	Ordinary	CO1.Concept of Differential Equation			
	Differential	CO2. Classification of differential equation according			
	Equations	to linearity and order.			
		CO3. Solution of Differential equation interpretation.			
		CO4. Using integrating factor, Separable and			
		Homogeneous equations can be convert to exact			
		differential Equation.			
	Discrete	CO1. Explains permutation notion.			
MSM 104	Mathematics	CO2. Use mathematical induction method in proofs.			
	mathematios	CO3. Use inclusion-exclusion principle.			
		CO4. list combinatorial tools and solve related			
		problems.			
		CO5. Solve problems via pigeonhole principle.			
MSM 105	Topology	CO1.They will learn about countable and			
		uncountable sets, Cantor's theorem and			
		continuum hypothesis, Zorn's lemma and well			
		ordering theorem and definition and examples of			
		topology.			
		CO2. They will learn about base and sub base of			
		topology, ordered, product and subspace topology			
		and their relation.			
		CO3. They will learn about the closed set, closure,			
		derive set, and limit point and boundary of a set.			
		CO4. They will learn the countable and separation			
		axioms of topology.			
		CO5. Understand about the basic properties of			
		compactness.			
		compactness. CO6. Learn about connected space and component.			
MSM 106	Operation	compactness.CO6. Learn about connected space and component.CO1.Identify and develop Operational research			
MSM 106	Operation Research	compactness.CO6. Learn about connected space and component.CO1.Identify and develop Operational research models from the verbal description of the real			
MSM 106	-	compactness. CO6. Learn about connected space and component. CO1.Identify and develop Operational research models from the verbal description of the real system			
MSM 106	-	 compactness. CO6. Learn about connected space and component. CO1.Identify and develop Operational research models from the verbal description of the real system CO2. Understand the mathematical tools they are 			
MSM 106	-	 compactness. CO6. Learn about connected space and component. CO1.Identify and develop Operational research models from the verbal description of the real system CO2. Understand the mathematical tools they are needed to solve optimization problems. 			
MSM 106	-	 compactness. CO6. Learn about connected space and component. CO1.Identify and develop Operational research models from the verbal description of the real system CO2. Understand the mathematical tools they are 			
MSM 106	-	 compactness. CO6. Learn about connected space and component. CO1.Identify and develop Operational research models from the verbal description of the real system CO2. Understand the mathematical tools they are needed to solve optimization problems. 			
MSM 106	-	 compactness. CO6. Learn about connected space and component. CO1.Identify and develop Operational research models from the verbal description of the real system CO2. Understand the mathematical tools they are needed to solve optimization problems. CO3.Use mathematical software to solve the 			
MSM 106	-	 compactness. CO6. Learn about connected space and component. CO1.Identify and develop Operational research models from the verbal description of the real system CO2. Understand the mathematical tools they are needed to solve optimization problems. CO3.Use mathematical software to solve the proposed models 			
MSM 106	-	 compactness. CO6. Learn about connected space and component. CO1.Identify and develop Operational research models from the verbal description of the real system CO2. Understand the mathematical tools they are needed to solve optimization problems. CO3.Use mathematical software to solve the proposed models CO4.Develop a report that describe the models and solving Techniques 			
MSM 106	-	 compactness. CO6. Learn about connected space and component. CO1.Identify and develop Operational research models from the verbal description of the real system CO2. Understand the mathematical tools they are needed to solve optimization problems. CO3.Use mathematical software to solve the proposed models CO4.Develop a report that describe the models and 			

MSM 201	Partial	CO1. Partial differential equations have a			
	Differential	remarkable ability to predict the world around us.			
	Equation	CO2. They can describe exponential growth and			
	•	decay.			
		CO3. Partial differential equation helps in			
		calculating the population growth of a species or the			
		change in investment return over time.			
		CO4.They are also used in medicine estimation for			
		modeling cancer cells growth			
MSM 202	Algebra-II	CO1. Introduction to basic concepts of system of			
	0	linear Equations.			
		CO2. Understand the concepts of vector space,			
		basis and dimension.			
		CO3. Study of linear transformation, representation			
		of linear			
		Transformation by matrices.			
		CO4. Introduction to canonical product,			
		Diagonalization, orthogonality, inner product space			
		etc.			
		CO5. Increase problem solving technique like			
		finding eigen value, eigen vectors, linear			
		dependence, independence, rank and nullity etc.			
MSM 203	Program	CO1. As a middle level language ,C program			
	ming in	combines both high level and low level languages.			
	С	CO2.It can be used for scripting for drivers and			
		software applications and kernels.			
		CO3. Companies like Facebook, Google, etc use C			
		for operating systems, games, embedded technology,			
		etc.			
MSM 204	Complex	CO1. Introduction to the basic concept and			
	Analysis	properties of complex numbers.			
		CO2. Study of differentiability, limit, continuity of a			
		complex number.			
		CO3. Introduction to analytic function, C-R			
		equation, harmonic function, harmonic conjugate			
		etc.			
		CO4. Study of complex Integration, Cauchy Integral			
		theorem,			
		Lioville's theorem power series etc.			
		CO5. Understand the concept of singularity			
		CO6. Increase problem solving method.			
MSM 205	OET Operation	CO1. recognize the importance and value of			
	Research	Operations Research and linear programming in			
		solving practical problems in industry			
		CO2. Interpret the transportation models' solutions			
		and infer solutions to the real-world problems.			

		CO3. Recognize and solve game theory and			
		assignment problems.			
		CO4. Gain knowledge of drawing project networks			
		for quantitative analysis of projects			
		CO5. Know when simulation and dynamic			
		programming can be applied in real world problems.			
MSM 301	Functional	CO1.Understand the basic principles of functional			
	Analysis	analysis			
	y	CO2. Understand the concept of Banach spaces,			
		linear operators and continuous linear functional.			
		CO3. Introduction to Hilbert space, operators on			
		Hilbert space.			
		CO4. Understand the concept of Representation			
		Theorems and Hahn–Banach extension theorem.			
		CO5.Understand the principles of Spectral theory.			
MSM 302	Graph theory	CO1. Student will learn the definition and example			
WISWI 302	Graph theory	of graphs, various operation on graphs,			
		homomorphism and isomorphism of graphs.			
		CO2. They will learn about graph connectivity and			
		complete graph.			
		CO3. They will learn various properties of Tree,			
		types of tree and some algorithms. And also cycle			
		and co-cycle space.			
		CO4. They will learn basic concept and properties of			
		Eulerian, Hamiltonian and Planer graph.			
		CO5. They will learn the basic concept of coloring			
		and covering of graphs and their applications			
MSM 303	Computational	CO1. Problem solving using numerical methods			
	Numerical	CO2. Graphical representation of complex problems			
	Analysis	to solve accurately			
		CO3.Simulation with the help of numerical analysis			
		can be done accurately and easily			
		CO4. Helps in multidisciplinary fields like			
		electronics and electrical engineering to design			
		complex circuits using finite difference equations.			
MSM 304	OET Operation	CO1: To understand the methodology of OR problem			
	Research	solving and formulate linear programming problem			
		CO2. To develop formulation skills in transportation			
		models and finding solutions			
		CO3. To understand the basics in the field of game			
		theory and assignment problems			
		CO4. To know how project management techniques			
		help in planning and scheduling a project			
		CO5.To know the basics of dynamic programming			
		and simulation.			

	Mechanics	in the design of airplane's wings, which helps in					
		maintaining the pressure over the plane.					
		CO2.Fluid Dynamics is used in turbines for the					
		generation of power from hydroelectric dams.					
		CO3. Fluid dynamics help in the design of pumps,					
		compressors, and piping used in air conditioning					
		system of homes.					
		CO4. The fundamental principles of fluid dynamics					
		are used to explain the mechanisms of biological					
		flows and their interrelationships with physiological					
		processes in health and disease disorder					
MSM 401	Measure	CO1.To introduce the concepts of measure and					
	Theory	integral with respect to a measure					
		CO2.To show their basic properties, and to provide					
		a basis for further studies in Mathematical Analysis					
		CO3. To construct Lebesgue's measure and learn					
		the theory of Lebesgue integrals on real line.					
		CO3. Provides information for effective production					
10015 400	0 1 771	planning and maintenance procedures.					
MSM 402	Graph Theory	CO1. To understand and apply the fundamental					
MSMMSM		concepts in graph theory.					
		CO2.Understand the basics of graph theory and					
		their various properties					
		CO3.Model problems using graphs and to solve these problems algorithmically					
		CO4.Apply graph theory concepts to solve real					
		world applications like routing, TSP/traffic control,					
		etc.					
		CO4.Optimize the solutions to real problems like					
		transport problems etc.,					
MSM 403	Computational	CO1. Acquire basic knowledge in solving					
	Numerical	interpolation with equal interval problems by					
	Method	various numerical methods. Estimate the missing					
		terms through interpolation methods.					
		CO2. Develop skills in analyzing the methods of					
		interpolating a given data, properties of					
		interpolation with unequal intervals and derive					
		conclusions, approximate a function using an					
		appropriate numerical method					
		CO3. Implement numerical methods for a variety of					
		multidisciplinary applications and a variety of					
		numerical algorithms using appropriate technology					
		CO4.Use relevant numerical techniques for					
		interpolation with equal and unequal intervals by					
		using various central difference formulae and code a					
		numerical method in a modern computer language.					

		CO5. Apply appropriate numerical methods to solve					
		the problem with most accuracy.					
MSM 404	Differential	CO1: Explain differential maps between surfaces					
	Geometry	and find derivatives of such maps, express					
		definition and parameterization of surfaces.					
		CO2: Find the derivative map of an isometry, defines					
		surfaces and their properties					
		CO3: Analyze the equivalence of two curves by					
		applying some theorems, express tangent spaces of surfaces.					
		CO4: Define the equivalence of two curves, Integrate differential forms on surfaces.					
		CO5: Defines the concept of manifolds, give					
		examples of manifolds and investigate their					
		properties.					
MSM 405	Fluid	CO1:To derive the equation of conservation of mass					
	Mechanics-II	and its application					
		CO2:To solve kinematic problems such as finding					
		particle paths and stream lines					
		CO3:To use important concepts of continuity					
		equation, Bernoulli's equation and turbulence, and					
		equation, Bernoulli's equation and turbulence, and apply the same to problems					
		equation, Bernoulli's equation and turbulence, and apply the same to problems CO4: To analyze laminar and turbulent flows					
MSM-406	Major Project	equation, Bernoulli's equation and turbulence, and apply the same to problems CO4: To analyze laminar and turbulent flows CO1.The students take up research work applying					
MSM-406	Major Project	equation, Bernoulli's equation and turbulence, and apply the same to problems CO4: To analyze laminar and turbulent flows CO1.The students take up research work applying the knowledge and Experience acquired during the					
MSM-406	Major Project	equation, Bernoulli's equation and turbulence, and apply the same to problems CO4: To analyze laminar and turbulent flows CO1.The students take up research work applying the knowledge and Experience acquired during the course.					
MSM-406	Major Project	 equation, Bernoulli's equation and turbulence, and apply the same to problems CO4: To analyze laminar and turbulent flows CO1.The students take up research work applying the knowledge and Experience acquired during the course. CO2. Increase problem solving technique and get 					
MSM-406	Major Project	 equation, Bernoulli's equation and turbulence, and apply the same to problems CO4: To analyze laminar and turbulent flows CO1.The students take up research work applying the knowledge and Experience acquired during the course. CO2. Increase problem solving technique and get the idea to write a Research paper or article. 					
MSM-406	Major Project	 equation, Bernoulli's equation and turbulence, and apply the same to problems CO4: To analyze laminar and turbulent flows CO1.The students take up research work applying the knowledge and Experience acquired during the course. CO2. Increase problem solving technique and get the idea to write a Research paper or article. CO3.Will help in their future research work. 					
MSM-406	Major Project	 equation, Bernoulli's equation and turbulence, and apply the same to problems CO4: To analyze laminar and turbulent flows CO1.The students take up research work applying the knowledge and Experience acquired during the course. CO2. Increase problem solving technique and get the idea to write a Research paper or article. CO3.Will help in their future research work. CO4. Introduce to new dimension of knowledge with 					
MSM-406	Major Project	 equation, Bernoulli's equation and turbulence, and apply the same to problems CO4: To analyze laminar and turbulent flows CO1.The students take up research work applying the knowledge and Experience acquired during the course. CO2. Increase problem solving technique and get the idea to write a Research paper or article. CO3.Will help in their future research work. 					

CO- PO MAPPING

Courses /PO's	PO1	PO2	PO3	PO4	PO5
HCT 1.1 Real Analysis	✓	~	~	×	~
HCT1.2 Algebra-I	✓	~	\checkmark	×	~
HCT 1.3 Ordinary Differential Equation	~	~	✓		~
HCT 1.4 Discrete Mathematics	~	~	\checkmark		~
HCT 1.5 General Topology		~	\checkmark	~	~
SCT 1.1 Operation Research	✓	~		×	~
HCT 2.1 Partial Differential Equation	~	×	~	×	✓
HCT 2.2 Algebra II		~	\checkmark	×	~
HCT 2.3 Programming in C	~	~	\checkmark	×	~
SCT 2.1 Complex Analysis	✓	~	\checkmark		~
OET 2.1 Basic Statistics	✓		\checkmark	✓	~
HCT 3.1 Functional Analysis	~	\checkmark	\checkmark	~	✓
HCT 3.2 Graph Theory-I			\checkmark		~
HCT 3.3 Computational Numerical Method-I	~		\checkmark	~	✓ ✓
SCT 3.2 Fluid Mechanics –I	~	~		~	~
OET 3.1 Basic Statistics	~	~	~		~
HCT 4.1 Measure Theory		~	\checkmark	✓	~
HCT 4.2 Graph Theory -II		~	\checkmark	✓	~
HCT 4.3 Computational Numerical Method-II	~	×	✓	✓	
HCT 4.4 Differential Geometry	✓	~	~	×	✓
SCT 4.1 Fluid Mechanics –II	~	~	\checkmark	~	
HCMP 4.5 Major Project	✓	✓		~	

CO- PSO MAPPING

Courses /PO's	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
HCT 1.1 Real Analysis	\checkmark	~			~	~
HCT1.2 Algebra-I	√	~		~	~	
HCT 1.3 Ordinary Differential Equation	V		✓	✓	~	~
HCT 1.4 Discrete Mathematics	√	✓			✓	~
HCT 1.5 General Topology	\checkmark	~	\checkmark	~		~
SCT 1.1 Operation Research	\checkmark	✓			~	~
HCT 2.1 Partial Differential Equation	\checkmark		✓	~	~	
HCT 2.2 Algebra II	\checkmark	~		~	~	
HCT 2.3 Programming in C	\checkmark	~		~		~
SCT 2.1 Complex Analysis	\checkmark	~			~	~
OET 2.1 Basic Statistics	\checkmark		\checkmark	~	✓	~
HCT 3.1 Functional Analysis			\checkmark		✓	~
HCT 3.2 Graph Theory-I	\checkmark	~	\checkmark		~	
HCT 3.3 Computational Numerical Method-I	√		\checkmark	~	✓	Ý
SCT 3.2 Fluid Mechanics –I		✓		~	~	~
OET 3.1 Basic Statistics	\checkmark	✓	\checkmark			~
HCT 4.1 Measure Theory		✓	\checkmark	~	~	~
HCT 4.2 Graph Theory -II	\checkmark	✓	\checkmark		~	
HCT 4.3 Computational Numerical Method-II	√	✓	✓	✓	~	
HCT 4.4 Differential Geometry	V	~		~		~
SCT 4.1 Fluid Mechanics –II	\checkmark	~	\checkmark		~	
HCMP 4.5 Major Project	✓	~		 ✓ 	~	